Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Metagenomics is a powerful tool for characterising viruses, with broad applications across diverse disciplines, from understanding the ecology and evolutionary history of viruses to identifying causative agents of emerging outbreaks with unknown aetiology. Additionally, metagenomic data contains valuable information about the amount of virus present within samples. However, we have yet to leverage metagenomics to assess viral load, which is a key epidemiological parameter. To effectively use sequencing outputs to inform transmission, we need to understand the relationship between read depth and viral load across a diverse set of viruses. Here, using target enrichment sequencing, we investigated the detection and recovery of virus genomes by spiking known concentrations of DNA and RNA viruses into wild rodent faecal samples. In total, 15 experimental replicates were sequenced with target enrichment sequencing and compared to shotgun sequencing of the same background samples. Target enriched sequencing recovered all spike-in viruses at every concentration (102, 103, and 105± 1 log genome copies) and showed a log-linear relationship between spike-in concentration and mean read depth. Background viruses (includingKobuvirusandCardiovirus) were recovered consistently across all biological and technical replicates, but genome coverage was variable between virus genera and likely reflected the composition of target enrichment probe panel. Overall, our study highlights the strengths and weaknesses of using commercially available panels to quantify and characterise wildlife viromes, and underscores the importance of probe panel design for accurately interpreting coverage and read depth. To advance the use of metagenomics for understanding virus transmission, further research will be needed to elucidate how sequencing strategy (e.g. library depth, pooling), virome composition, and probe design influence viral read counts and genome coverage.more » « lessFree, publicly-accessible full text available April 16, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.more » « less
-
Abstract Pathogens can spill over and infect new host species by overcoming a series of ecological and biological barriers. Hendra virus (HeV) circulates in Australian flying foxes and provides a data‐rich study system for identifying environmental drivers underlying spillover events. The frequency of spillover events to horses has varied interannually since the virus was first discovered in 1994. These observations suggest that HeV spillover events are driven, in part, by environmental factors, including loss of flying fox habitat and climate variability.We explicitly examine the impact of environmental variation on the risk of HeV spillover at three spatial scales relevant to this system. We use a dataset of 60 spillover events and boosted regression tree methods to identify environmental features (including concurrent and lagged temperature, rainfall, vegetation indices, land cover, and climate indices) at three spatial scales (1‐km, 20‐km, 100‐km radii) associated with horse contacts and reservoir species ecology.We find that temperature, local (1‐km radius) human population density, and landscape (100‐km radius) forest cover and pasture are the most influential environmental features associated with HeV spillover risk. By including multiple spatial scales and temporal lags in environmental features, we can more accurately quantify risk across space and time than with models that use a single scale. For example, high quality vegetation at the local scale and within a foraging radius (20‐km) in the concurrent month and previous years, combined with poorer quality vegetation at the landscape scale in the concurrent month increase risk of HeV spillover. These and other environmental associations likely influence the dynamic foraging behaviour of reservoir flying foxes and drive contacts that facilitate spillover into horse populations.Synthesis and application: Current management of HeV spillover focuses on local‐scale interventions – primarily through vaccination and detection of infected horses. Our study finds that HeV spillover risk is also driven by environmental changes over much larger scales and demonstrates management practices would benefit from incorporating landscape interventions alongside local interventions.more » « less
An official website of the United States government
